Underground mining (hard rock)

Underground mining (hard rock)

Underground mining (hard rock)


Underground hard rock mining refers to various underground mining techniques used to excavate hard minerals such as those containing metals like gold, copper, zinc, nickel and lead or gems such as diamonds. In contrast soft rock mining refers to excavation of softer minerals such as coal, or oil sands.



Mine Access


[+] Underground Access


Accessing underground ore can be achieved via a decline (ramp), vertical shaft or adit.

* Declines can be a spiral tunnel which circles either the flank of the deposit or circles around the deposit. The decline begins with a box cut, which is the portal to the surface. Depending on the amount of overburden and quality of bedrock, a galvanized steel culvert may be required for safety purposes.

* Shafts are vertical excavations sunk adjacent to an ore body. Shafts are sunk for ore bodies where haulage to surface via truck is not economical. Shaft haulage is more economical than truck haulage at depth, and a mine may have both a decline and a ramp.

* Adits are horizontal excavations into the side of a hill or mountain. They are used for horizontal or near-horizontal ore bodies where there is no need for a ramp or shaft.

Declines are often started from the side of the high wall of an open cut mine when the ore body is of a payable grade sufficient to support an underground mining operation but the strip ratio has become too great to support open cast extraction methods.

[+] Ore Access


Levels are excavated horizontally off the decline or shaft to access the ore body. Stopes are then excavated perpendicular (or near perpendicular) to the level into the ore.

[+] Development Mining vs. Production Mining


Underground mining (hard rock)
There are two principle categories of mining, development mining and production mining.

Development mining is composed of excavation almost entirely in (non-valuable) waste rock in order to gain access to the orebody. There are five steps in development mining: remove previously blasted material (muck out round), drill rock face, load explosives, blast explosives, and support excavation.

Production mining is further broken down into two methods, long hole and short hole. Short hole mining is similar to development mining, except that it occurs in ore. There are several different methods of long hole mining. Typically long hole mining requires two excavations within the ore at different elevations below surface, (15m-30m apart). Holes are drilled between the two excavations and loaded with explosives. The holes are blasted and the ore is removed from the bottom excavation.

[+] Ventilation

Door for directing ventilation in an old lead mine. The ore hopper at the front is not part of the ventilation.
Door for directing ventilation in an old lead mine. The ore hopper at the front is not part of the ventilation.

One of the most important aspects of underground hard rock mining is ventilation. Ventilation is required to clear toxic fumes from blasting and removing exhaust fumes from diesel equipment. In deep hot mines ventilation is also required for cooling the workplace for miners. Ventilation raises are excavated to provide ventilation for the workplaces, and can be modified to be used as escape routes in case of emergency.The main sources of heat in underground hard rock mines are Virgin rock temperature, Machinery, Auto compression and Fissure water although other small factors contribute like people breathing, inefficiency of machinery and blasting operations.

[+] Ground Support


Some means of support is required in order to maintain the stability of the openings that are excavated. This support comes in two forms, local support and area support.

[+] Area Ground Support


Area ground support is used to prevent major ground failure. Holes are drilled into the back (ceiling) and walls and a long metal bar (or rock bolt) is installed to hold the ground together. There are several different styles of area ground support.

* Point Anchor Bolts are a common style of area ground support. A point anchor bolt is a metal bar between 20mm-25mm in diameter, and between 1m-4m in length (the size is determined by the Mine's engineering department). There is an expansion shell at the end of the bolt which is inserted into the hole. As the bolt is tightened by the installation drill the expansion shell expands and the bolt tightens holding the rock together.
* Resin Grouted Rebar is used in areas which require more support than a point anchor bolt can give. The rebar used is of similar size as a point anchor bolt but does not have an expansion shell. Once the hole for the rebar is drilled, cartridges of epoxy resin are installed in the hole. The rebar bolt is installed after the resin and spun by the installation drill. This opens the resin cartridge and mixes it. Once the resin hardens the drill spinning tightens the rebar bolt holding the rock together.

[+] Local Ground Support


Local ground support is used to prevent smaller rocks from falling from the backs and walls. Not all excavations require local ground support.

* Welded Wire Mesh is a metal screen with 10 cm x 10 cm openings. It is held to the backs using point anchor bolts or resin grouted rebar.
* Shotcrete is a spray on concrete which coats the backs and walls preventing smaller rocks from falling. Shotcrete thickness can be between 50 mm-100 mm.
* Latex Membranes can be sprayed on the backs and walls similar to shotcrete, but in smaller amounts.

[+] Stope and Retreat vs. Stope and Fill

[+] Stope and Retreat
Sub-Level Caving Subsidence reaches surface at the Ridgeway underground mine.
Sub-Level Caving Subsidence reaches surface at the Ridgeway underground mine.

Using this method, mining is planned to extract rock from the stopes without filling the voids, this allows the wall rocks to cave in to the extracted stope after all the ore has been removed. The stope is then sealed to prevent access.

[+] Stope and Fill


Where large bulk ore bodies are to be mined at great depth, or where leaving pillars of ore is uneconomical, the open stope is filled with backfill, which can be a cement and rock mixture, a cement and sand mixture or a cement and tailings mixture. This method is popular as the refilled stopes provide support for the adjacent stopes, allowing total extraction of economic resources.

[+] Mining Methods


* Cut and Fill mining is a method of short hole mining used in narrow ore zones. An access ramp is driven off the main level to the bottom of the ore zone to be accessed. Using development mining techniques a drift is driven through the ore to the defined limit of mining. Upon completion the drift (or "cut") is filled back to the access ramp with the defined type of backfill, which may be either consolidated or unconsolidated. Another drift is driven on top of filled cut. This process continues until the top of the stope is reached.

* Drift and Fill is similar to cut and fill, except it is used in ore zones which are wider than the method of drifting will allow to be mined. In this case the first drift is developed in the ore, is backfilled using consolidated fill. The second drift is driven adjacent to the first drift. This carries on until the ore zone is mined out to its full width, at which time the second cut is started atop of the first cut.

* Room and Pillar mining : Room and pillar mining is commonly done in flat or gently dipping bedded ore bodies. Pillars are left in place in a regular pattern while the rooms are mined out. In many room and pillar mines, the pillars are taken out starting at the farthest point from the stope access, allowing the roof to collapse and fill in the stope. This allows a greater recovery as less ore is left behind in pillars.

* Block Caving such as is used at the Northparkes Mine [1] in NSW, Australia, is used to effect with large sized orebodies which are typically composed of low-grade, friable ore. The method works best with cylindrical, vertical orebodies. Pre-production mining development work consists of driving accesses underneath the orebody[2]. This includes the formation of "drawbells" by undercutting and blasting. Initially, blasted ore is removed via the extraction level underneath the drawbells until a sufficient area of unsupported ore is formed that the orebody begins to fracture and cave on its own. The eventual aim of the block caving method is that the friable ore needs no blasting and continues to fracture and break up on its own, flowing down the drawbells to the extraction level, where it is removed from the ore chute mouths with loaders and sent off for processing. Eventually the fracturing will propagate to the surface, resulting in subsidence. One of the main hazards associated with block-caving is that fracturing can potentially stop before it reaches the surface unbeknownst to the people in control of the mine. If fracturing stops propagating upwards and extraction continues, a large void can be formed, resulting in the potential for a sudden and massive collapse and catastrophic windblast throughout the mine. [3]

Comments